Modulation of retroviral restriction and proteasome inhibitor-resistant turnover by changes in the TRIM5alpha B-box 2 domain.
نویسندگان
چکیده
An intact B-box 2 domain is essential for the antiretroviral activity of TRIM5alpha. We modeled the structure of the B-box 2 domain of TRIM5alpha based on the existing three-dimensional structure of the B-box 2 domain of human TRIM29. Using this model, we altered the residues predicted to be exposed on the surface of this globular structure. Most of the alanine substitutions in these residues exerted little effect on the antiretroviral activity of human TRIM5alphahu or rhesus monkey TRIM5alpharh. However, alteration of arginine 119 of TRIM5alphahu or the corresponding arginine 121 of TRIM5alpharh diminished the abilities of the proteins to restrict retroviral infection without affecting trimerization or recognition of the viral capsid. The abilities of these functionally defective TRIM5alpha proteins to accelerate the uncoating of the targeted retroviral capsid were abolished. Removal of the positively charged side chain from B-box 2 arginines 119/120/121 resulted in diminished proteasome-independent turnover of TRIM5alpha and the related restriction factor TRIMCyp. However, testing of an array of mutants revealed that the rapid turnover and retroviral restriction functions of this B-box 2 region are separable.
منابع مشابه
The TRIM5alpha B-box 2 domain promotes cooperative binding to the retroviral capsid by mediating higher-order self-association.
The retroviral restriction factor, TRIM5alpha, blocks infection of a spectrum of retroviruses soon after virus entry into the cell. TRIM5alpha consists of RING, B-box 2, coiled-coil, and B30.2(SPRY) domains. The B-box 2 domain is essential for retrovirus restriction by TRIM5alpha, but its specific function is unknown. We show here that the B-box 2 domain mediates higher-order self-association o...
متن کاملProteasomal Degradation of TRIM5α during Retrovirus Restriction
The host protein TRIM5alpha inhibits retroviral infection at an early post-penetration stage by targeting the incoming viral capsid. While the detailed mechanism of restriction remains unclear, recent studies have implicated the activity of cellular proteasomes in the restriction of retroviral reverse transcription imposed by TRIM5alpha. Here, we show that TRIM5alpha is rapidly degraded upon en...
متن کاملA B-box 2 surface patch important for TRIM5alpha self-association, capsid binding avidity, and retrovirus restriction.
TRIM5alpha is a tripartite motif (TRIM) protein that consists of RING, B-box 2, coiled-coil, and B30.2(SPRY) domains. The TRIM5alpha(rh) protein from rhesus monkeys recognizes the human immunodeficiency virus type 1 (HIV-1) capsid as it enters the host cell and blocks virus infection prior to reverse transcription. HIV-1-restricting ability can be eliminated by disruption of the B-box 2 domain....
متن کاملProteasome inhibition reveals that a functional preintegration complex intermediate can be generated during restriction by diverse TRIM5 proteins.
The primate TRIM5 proteins constitute a class of restriction factors that prevent host cell infection by retroviruses from different species. The TRIM5 proteins act early after virion entry and prevent viral reverse transcription products from accumulating. We recently found that proteasome inhibitors altered the rhesus monkey TRIM5alpha restriction of human immunodeficiency virus type 1 (HIV-1...
متن کاملSpecific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor.
The host restriction factor TRIM5alpha mediates species-specific, early blocks to retrovirus infection; susceptibility to these blocks is determined by viral capsid sequences. Here we demonstrate that TRIM5alpha variants from Old World monkeys specifically associate with the HIV type 1 (HIV-1) capsid and that this interaction depends on the TRIM5alpha B30.2 domain. Human and New World monkey TR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 81 19 شماره
صفحات -
تاریخ انتشار 2007